
research papers

146 DOI: 10.1107/S0108767303029659 Acta Cryst. (2004). A60, 146±152

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 24 November 2003

Accepted 22 December 2003

# 2004 International Union of Crystallography

Printed in Great Britain ± all rights reserved

The crystallographic fast Fourier transform. IV.
FFT-asymmetric units in the reciprocal space

Andrzej Kudlicki,* Maga Rowicka and Zbyszek Otwinowski

Department of Biochemistry, UT Southwestern Medical Center at Dallas, 5323 Harry Hines

Boulevard, Dallas, TX 75390-9038, USA. Correspondence e-mail: andrzej@work.swmed.edu

New algorithms have been outlined for ef®cient calculation of the fast Fourier

transform of data revealing crystallographic symmetries in previous papers by

Rowicka, Kudlicki & Otwinowski [Acta Cryst. (2002), A58, 574±579; Acta Cryst.

(2003), A59, 172±182; Acta Cryst. (2003), A59, 183±192]. The present paper

deals with three implementation-related issues, which have not been discussed

before. First, the shape of the FFT-asymmetric unit in the reciprocal space is

discussed in detail. Next, a method is presented of reducing symmetry in-place,

without the need to allocate memory for intermediate results. Finally, there is a

discussion on how the algorithm can be used for the inverse Fourier transform.

The results are derived for the case of the one-step symmetry reduction

[Rowicka, Kudlicki & Otwinowski (2003). Acta Cryst. A59, 172±182]. The

algorithms are also an important step in the more complicated cases of centered

lattices [Rowicka, Kudlicki & Otwinowski (2003). Acta Cryst. A59, 183±192] and

space groups with non-removable special positions, such as cubic groups

[Rowicka, Kudlicki & Otwinowski (2004), in preparation]. In the present paper,

as in our previous ones, complex-to-complex FFTs only are dealt with.

Modi®cations needed to adapt the results to data with Hermitian symmetry will

be described in our forthcoming article [Kudlicki, Rowicka & Otwinowski

(2004), in preparation].

1. Background

Algorithms for reducing crystallographic symmetry in fast

Fourier transforms for a number of crystallographic space

groups have been presented in our previous work (Rowicka et

al., 2002, 2003a,b). These algorithms are based on a novel

choice of an asymmetric unit in the real space. Our asymmetric

units are regular and retain the periodicity of the crystal.

These properties enable us to ef®ciently reduce the crystal-

lographic symmetry. However, the resulting asymmetric units

are non-contiguous. Another innovation is that we are using a

non-standard computational grid in the real space. Our grid

coordinates are obtained from the fractional coordinates by

multiplying them by a matrix A and then shifting by a vector b

(see left panel of Fig. 1). The translation by b causes phase

shift in the reciprocal space. This affects also groups that do

not contain translation in the traditional representation.

Additional systematic absences may appear as a result. The

asymmetric unit in the real space is de®ned by the decimation

matrix A0 (see left panel of Fig. 1). The shape of a FFT-

asymmetric unit (FFT-ASU) in the reciprocal space depends

on the form of the actual symmetry operators and the sizes of

grids. Manual design of FFT-ASUs is not feasible. There are

many possible choices of FFT-ASU and choosing an appro-

priate one makes a difference. In Rowicka et al. (2002) and

Rowicka et al. (2003a), we have presented speci®c choices of

FFT-ASUs in the reciprocal space for complex-to-complex

Fourier transforms in two crystallographic plane groups: p3

and p4. However, we have not discussed yet how an appro-

priate FFT-ASU can be chosen for any space group. Designing

a procedure for automatic generation of such FFT-ASUs is

one of the goals of this paper and is presented in x2. Later, in

x5, we will show that, for FFT-ASUs constructed as in x2, our

method allows for a fully in-place calculation of the FFT, thus

not only reducing the CPU time but also minimizing memory

usage. This involves classifying data points according to their

Figure 1
Example of duality between FFT-asymmetric units in the real and
reciprocal space for a twofold symmetry and a complex-to-complex
Fourier transform. These asymmetric units are de®ned by the period

matrix A � 8 0

0 4

� �
, decimation matrix A0 � 2 0

0 1

� �
and a shift vector

b �
1
2
1
2

� �
. Open circles depict grid points not in the asymmetric unit, ®lled

circles are points from the asymmetric unit. Left: FFT-ASU in the real
space. Note that the origin of the coordinate system is shifted in the real
space. Right: Prototype for a reciprocal-space FFT-asymmetric unit.



algebraic properties, e.g. isotropy subgroups (x3). Finally, we

will show how the procedure can be applied for calculating the

inverse Fourier transform.

We use similar notions and follow the same mathematical

notation as in our previous articles and as in Bricogne (1993).

In what follows, we recall the most important concepts and

symbols. For the reader's convenience, a more thorough

mathematical primer is included in Appendix A.

Throughout this paper, we will often identify vectors

differing by a whole grid. Therefore, we will refer to equiva-

lence classes (see Appendix A). The equivalence class of a

vector h with respect to a matrix B is de®ned by

�h�B :� fk 2 Z3 : kÿ h 2 BZ3g; �1�
where Z denotes the set of all integers. In this paper, we will

use the above construction in two cases. The ®rst one is �h�AT ,

where A is the matrix de®ning the crystallographic grid. Then,

the reciprocal FFT-unit cell ÿ� is de®ned as

ÿ� :� f�h�AT : h 2 Z3g: �2�
Note that the number of points in the FFT-unit cell in the

reciprocal space is det�AT� � det�A�, that is the same as in the

unit cell in the real space. Another example will be used for

de®ning the FFT-ASU prototype in equation (6). Where there

is no risk of confusion, we will sometimes write h instead of

�h�B.

The action of the symmetry operator Sg � �Rg; tg� is given

(Bricogne, 1993) in the reciprocal space by

S�gF�h� � eA�h; tg�F�RT
g h�; �3�

where

eA�h; tg� � exp�ÿ2�i h �Aÿ1tg�:

2. FFT-asymmetric unit in the reciprocal space

We de®ne the FFT-asymmetric unit in the reciprocal space D�

as a subset of a discrete data set ÿ� as follows. First, D� and its

symmetric images should cover the entire FFT-unit cell ÿ�:[
g2G

[
h2D�
�RT

g h�AT � ÿ�: �4�

Second, D� is a minimal subset of the above property. This

means that two elements from D� must not be symmetry-

related:

h1; h2 2 D�; h1 6� h2�)8g2G �RT
g h1�AT 6� h2: �5�

In other words, all data in a FFT-asymmetric unit are linearly

independent. According to the above, the shape of a FFT-

asymmetric unit depends on the form of the actual symmetry

operators and the sizes of grids. There are many possible

choices of FFT-asymmetric unit, we try to choose a convenient

one in each case.

In the general case, rather than designing the FFT-asym-

metric unit for each group and grid size separately, we

generate them automatically, using a heuristic algorithm. The

algorithm starts from a prototype ÿ�0 :

ÿ�0 :� f�h�AT
1

: h 2 Z3g; �6�
where A1 � AAÿ1

0 . This prototype is dual to the real-space

asymmetric unit (see Fig. 1). In particular, it contains the same

amount of points as the asymmetric unit in the real space. The

FFT-ASU will be derived from ÿ�0 using an iterative routine.

The routine works by replacing points in the prototype, thus

preserving the total amount of data. First, we identify points in

ÿ�0 , which do not belong to a FFT-ASU. Points may be

excluded from the FFT-ASU for either of the two following

reasons.

(i) Systematic absences, that is points, where the Fourier

transform F always equals zero. This happens if, under the

action of the symmetry operator Sg � �Rg; tg�, the reciprocal-

space point h remains unchanged:

�RT
g h�AT � h;

but the phase of F at this point is shifted by ' :� ÿ2�h �Aÿ1tg,

where ' 6� 2k� (for integer k). In this case, equation (3)

reduces to

F�h� � exp�i'�F�h�; �7�
where exp�i'� 6� 1. Then, the only solution is F�h� � 0,

regardless of the values of f . Note that the shift of origin in the

real space creates non-standard systematic absences in the

reciprocal space (see Fig. 3).

(ii) Points whose symmetric images are also in the same

prototype of asymmetric unit. These are removed to satisfy

(5).

Since the Fourier transform is invertible, the numbers of

data points in an asymmetric unit in the real space and in an

FFT-asymmetric unit in the reciprocal space must be equal.

This means that, for each point removed from the prototype

[because of either (i) or (ii) above], an extra point has to be

added to it.1 After the replacement procedure is ®nished, the

modi®ed prototype should satisfy the de®nition of a FFT-

ASU. For reasons that will be explained in x5, we ®nd that

good candidates for replacements are points translated by the

edges of the initial prototype, s0; s1; s2. The algorithm of

making the FFT-asymmetric unit is the following:

(i) Set v to ®rst point from the current prototype. Set ¯ag

to false.

(ii) If v falls into either of the two categories of points that

must be excluded from asymmetric units, then replace v with

v� s0 or v� s1 or v� s2 (at least one of them is always good),

and set ¯ag to true.

(iii) If v is the last point, and ¯ag is true, then go to (i).

(iv) Set v to the next point from the current prototypes, and

go to (ii).

The decision, which of the points v0 � v� s0, v1 � v� s1 and

v2 � v� s2 to choose in step (ii) of the above algorithm
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requires additional explanation. First, if any of the three is not

a valid member of a FFT-asymmetric unit, it is rejected. Next,

each of the remaining candidates is assigned a score, the

higher the smaller its distance from the prototype. The point

with the highest score is selected. In theory, this algorithm may

result in in®nite loops should some two points compete for a

slot near the prototype. A method of exiting such a loop is to

change the scoring function. There are many good choices of a

new score, e.g. reverse of the original, or even a random score.

The freedom of choosing a new score does not mean that the

asymmetric unit will change between calculations. Once a

FFT-ASU shape is generated for a set of grid parameters and

symmetry operators, it can be saved and re-used every time

the FFT routine is called with these parameters.

A schematic ¯ow chart of making FFT-ASUs from proto-

types is presented in Fig. 2. In Fig. 3, we present an example of

the difference between the FFT-ASU and its prototype.

The algorithms presented in this section produce a FFT-

ASU, on which the Fourier transform will be calculated. This

FFT-ASU is as compact and as regular as possible, which will

prove to be important in the process of the actual computa-

tions.

3. Isotropy subgroups and their related quotient groups

The next step after specifying the FFT-ASU is to classify its

points with respect to their properties relevant in the subse-

quent calculations. The most obvious of such properties is the

isotropy subgroup of the point in question. We de®ne the

isotropy subgroup of a point h in the reciprocal space Gh as a

set of those operators from the underlying crystallographic

group G whose rotational parts transform h onto itself:

Gh � fg 2 G : �RT
g h�AT � hg: �8�

Note that Gh is indeed a subgroup of G. Moreover, every

subgroup of G may be an isotropy subgroup of a point. The

smallest possible isotropy subgroup consists only of the

identity element e. The biggest is the whole group G. The

number of elements of the isotropy group will be called the

multiplicity of the point h.

Another useful notion is that of a quotient group G=Gh. The

group G=Gh is a set of distinct cosets

gGh � fgu : u 2 Ghg:

The orbit Gh of a point h is the collection of all distinct images

of h under the action of group G. The number of elements of

the orbit of a point h coincides with the number of elements of

the quotient group G=Gh. Note that

jGj � jGhjjG=Ghj � jGhjjGhj � multiplicity�h�jGhj; �9�

where jGj denotes the number of elements of G etc. A simple

example explaining the notions introduced above is presented

in Fig. 4. However, this example does not cover all the

phenomena arising in our considerations. In particular, in

some cases two points h1 and h2 with different isotropy

subgroups Gh1
6� Gh2

may still yield the same quotient group

G=Gh1
� G=Gh2

. For a practical example, let us consider the

space group P422. Let the FFT-unit cell be given by

ÿ� � f0; 1; . . . ; 7g � f0; 1; . . . ; 7g � f0; 1g:

The rotational parts of the symmetry operators in the grid

coordinate system are the same as in the crystallographic

(fractional) coordinates:

Figure 2
A ¯ow chart of the algorithm for iterating FFT-ASU prototypes. The
main (inner) loop is performed over all points in the prototype of the
FFT-asymmetric unit. This entire loop is repeated until the current
prototype D is a valid FFT-ASU (outer loop). This is the case when no
point replacements in D have been made during the last cycle of the outer
loop, i.e. t � 0. The symbol e denotes the identity operator in the group G.
Points are replaced as described in x2.
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1 0 0
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ÿ1 0 0

0 0 ÿ1

264
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The isotropy subgroups of points h1 � �1; 0; 0� and

h2 � �0; 1; 0� are the following:

Gh1
� fRT

1 ;RT
2 g; Gh2

� fRT
1 ;RT

4 g:
Clearly,

Gh1
6� Gh2

;

nonetheless their corresponding quotient groups coincide:

G=Gh1
� fRT

1 ;RT
3 ;RT

5 ;RT
7 g � G=Gh2

:

4. Implications of the symmetry-reduction formula

The core of crystallographic FFT computation is the imple-

mentation of the symmetry-reduction formula (Rowicka et al.,

2003a). For points from the prototype ÿ�0, it has the following

simple form:

F�h� � P
g2G

eA�h; tg�Y��RT
g h�AT

1
�; �10�

where Y is the Fourier transform of data from the real-space

asymmetric unit ÿ0:

Y�h� � P

2ÿ0

f �
�eA�h; 
�: �11�

Note that the sum in equation (10) is over the points from the

orbit of h. Should the multiplicity of h be greater than one,

some of these points are repeated with different phase factors.

In this case, the orbit has fewer distinct elements than jGj [cf.

equation (9)].

As we have shown in x2, the actual FFT-ASU may not

coincide with its prototype. It usually differs from the proto-

type by a few points. The points from ÿ0 that do not belong to

the FFT-ASU are replaced by points translated by an edge of

the prototype, si. Let us see what is the impact of replacing h1

by h1 � si on the symmetry reduction:

F�h1 � si� �
P
g2G

eA�si; tg�eA�h1; tg�Y��RT
g �h1 � si��AT

1
�:

Note that since si is a prototype edge and ���AT
1

denotes coor-

dinates taken modulo prototype, then

�RT
g �h1 � si��AT

1
� �RT

g h1�AT
1
:

From the above,

F�h1 � si� �
P
g2G

eA�si; tg�feA�h1; tg�Y��RT
g h1�AT

1
�g: �12�

The right-hand sides of (10) and (12) differ only by the factor

eA�h1; tg� under the sum. Replacing points by their translation

by si introduces only a slight modi®cation to the symmetry-

reduction formula. Also, the orbits of the points taken modulo

prototype remain unchanged. This is our motivation for

choosing the replacement procedure proposed in x2.

5. In-place forward and inverse FFT

In this section, we will show how the form of the symmetry

reduction formula [(10) and (12)] allows one to perform the

symmetric part of the FFT calculation (computing F from Y)

in-place. First, note that in order to compute F�h� the only

points at which Y need be known are the ones from the orbit

of h (modulo prototype). Also, these data are also suf®cient to

evaluate the Fourier transform F on the whole orbit of h

(again modulo prototype). This property is crucial because it

enables us to compute F from Y `orbit by orbit'. In particular,

after processing an orbit, we can store the resulting F's in the

same memory addresses we have taken the Y's from.

The Fourier transform is a linear operation and so is its

symmetric part. Hence, for the orbit of a point h, the

symmetric step can be represented by multiplication by a

square jG=Ghj � jG=Ghj matrix (see Fig. 5). Let us call this

matrix Mh. Its entries are given by the symmetry reduction

formula

F�RT
gp

h� �P
q

eT
A�RT

gp
h; tgÿ1

q
�Y�RT

gÿ1
q

RT
gp

h�:

The multiplication table in G has to be pre-computed in order

to obtain entries of the matrix Mh. In the simplest case, when

all points from the orbit of the point h have trivial isotropy

subgroups (i.e. multiplicity 1), then Mh is a jGj � jGj matrix

and all its entries have modulus 1.

If h has a nontrivial isotropy subgroup Gh with mh elements,

then Mh has a slightly more complicated structure. Namely, it

is a product of a matrix M0
h with entries of modulus 1, times a

diagonal matrix Dh, with diagonal entries being a sum of mh

appropriate twiddle factors:

Mh � M0
hDh:

The matrix Dh has the following form:

Dh �

Pmh

l�1 exp�i'l;1� 0 . . . 0

0
Pmh

l�1 exp�i'l;2� . . . 0

..

. ..
. ..

.

0 0 . . .
Pmh

l�1 exp�i'l;jGj=mh
�

26664
37775;

where 'l;n denote the appropriate phase shifts, as in equation

(12). Let M denote a block-diagonal matrix, consisting of the

matrices Mh, numbered by representatives of all distinct orbits

in the FFT-ASU:
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M �
M

Gh

Mh �

Mh1
0 . . . 0

0 Mh2
. . . 0

..

. ..
. ..

.

0 0 . . . Mhk

26664
37775;

where k is the number of distinct orbits. For each h, the matrix

Mhi
has the dimensions �jGj=mh� � �jGj=mh�, whose possible

values in one-step symmetry reduction are 1� 1, 2� 2, 3� 3,

4� 4, 6� 6 or 8� 8.

Calculating the Fourier transform in the FFT-asymmetric

unit, FjASU, from the real-space asymmetric unit data, fjASU,

can be represented by multiplication by a matrix:

FjASU � FjASU fjASU:

Our method of calculating FjASU can be thought of as

consisting of three steps. Each of these steps can be expressed

by a matrix multiplication. First, we apply the P1 Fourier

transform matrix Y to the real-space asymmetric unit data

fjASU. Next, a permutation matrix P aligns orbits of points

together. Finally, the symmetric part of the FFT can be

represented by a block-diagonal matrix M, with appropriate

matrices Mh on its diagonal:

FjASU � MPY: �13�

Now that we have reduced FjASU to this form, the inverse

Fourier transform reads:

Fÿ1
jASU � Yÿ1Pÿ1Mÿ1:

M, being a block-diagonal matrix, can be inverted easily. The

calculation reduces to inverting the small matrices Mh:

Mÿ1 �
M

Gh

Mÿ1
h ;

Clearly, the inverse of the permutation matrix is its transpo-

sition, Pÿ1 � PT (see e.g. Tolimieri et al., 1997). The ®nal step,

applying Yÿ1, is in practice performed by P1-FFT library

functions (using the Cooley±Tukey decomposition). This

completes the description of performing both forward and

inverse FFT in-place.

6. Discussion

We have discussed the shapes of FFT-asymmetric units in the

reciprocal space for complex-to-complex crystallographic

FFTs. In crystallography, Fourier transforms are real-to-

Figure 5
Schematic illustration of the method of obtaining the values of the

Fourier transform F on the orbit of h (red) from the values of Y at the
same set of points (blue). This is done through a multiplication by a
matrix M. This calculation is done fully in-place.

Figure 3
Differences between a FFT-ASU and its prototype. The symmetry group
is the planar group p4. Circles in the dashed area depict the FFT-unit cell.
The symmetry operator symbols in the ®gure depict operators, containing
additional phase shifts due to the non-standard origin of the coordinates
in the real space. The prototype of the FFT-ASU consists of the points in
the shaded area. Connectors with circles correspond to symmetry action
within the prototype. Black connectors depict disqualifying symmetry,
while the green connector shows a point with higher multiplicity (non-
disqualifying symmetry). Points disquali®ed from the prototype are
replaced with points translated by the edge of the prototype, as shown by
blue arrows. The resulting FFT-ASU is colored red. The points [0, 4], [4, 0]
and [4, 4] are the systematic absences, so they do not belong to any image
of the FFT-ASU.

Figure 4
Isotropy subgroups in the case of the planar group G � Pmm. This group
consists of four operators: e � �x; y�, g1 � �ÿx; y�, g2 � �x;ÿy� and
g3 � �ÿx;ÿy�. The points on the x axis (green, hx � �x; 0�) are invariant
with respect to e and g2. Therefore, these points have multiplicity 2 and
their isotropy subgroup is G�x;0� � fe; g2g. Their corresponding quotient
group G=G�x;0� consists of two elements: G=G�x;0� � fe; g1g. Both g1 and g2

are involutions, so G�x;0� and G=G�x;0� are indeed groups. Analogously,
points on the y axis (yellow, hy � �0; y�) have multiplicity 2, the isotropy
subgroup G�0;y� � fe; g1g and the corresponding quotient group
G=G�0;y� � fe; g2g. The point �0; 0� (red) is invariant with respect to all
operators from G, so G�0;0� � G, while the quotient group is trivial:
G=G�0;0� � feg. The multiplicity of the point �0; 0� equals 4. All other
points (white) are invariant only with respect to e, so they have
multiplicity 1, trivial isotropy subgroup, and their quotient group is the
whole G. Here, we assumed there are more than eight points along all the
unit-cell edges. Therefore, the other point with non-trivial isotropy
subgroup, which lies exactly at the middle of the unit cell, is not shown in
this ®gure.



complex or complex-to-real transforms. To perform ef®ciently

real-to-complex FFT calculations, one encodes two real

numbers as one complex number. This procedure is called

multiplexing. After multiplexing, a complex-to-complex FFT

is performed. In the present article, we have described an

ef®cient FFT-ASU choice for complex-to-complex crystal-

lographic FFT. Designing a multiplexing compatible with

crystallographic symmetry is a separate problem. Optimal

multiplexing should be performed fully in-place. Doing

multiplexing fully in-place is a dif®cult task even if there is no

crystallographic symmetry involved. The shapes of 3D asym-

metric units due to Hermitian symmetry only are inherently

quite complicated; this is why they are not implemented in

standard FFT libraries such as FFTW (Frigo & Johnson, 1998)

or Numerical Recipes (Press et al., 1992) (additional data

arrays in the reciprocal space are allocated in these programs).

Our approach allows for combining Hermitian and crystal-

lographic symmetry, while performing all the calculations fully

in-place. The details of our solution are beyond the scope of

this article, and they are presented in our next paper (Kudlicki

et al., 2004).

APPENDIX A
Mathematical notions and notation

Let Z denote the set of all integers and Z3 denote the

Cartesian product Z� Z� Z. Matrices and vectors will be

written in bold type. The standard basis vectors of Z3 will be

denoted by e1, e2 and e3. Our goal is to compute discrete

Fourier transforms of a periodic function f de®ned on Z3. Such

a function will have the periodicity of the underlying crystal

structure, described by a 3� 3 matrix with integer entries, A.

From now on, we will require that A be invertible (that is, that

its determinant is not equal to zero: det A 6� 0). The periodi-

city condition reads

f �x� t� � f �x�;
where x 2 Z3 and

t 2 AZ3 � fx 2 Z3 : there exists a y 2 Z3 such that x � Ayg:
We use the notion of an equivalence relation, a useful example

of which is given by

yRA x, yÿ x 2 AZ3:

This means that x and y are in the relation RA if and only if

they have the same fractional coordinates. The equivalence

class of x (with respect to the relation RA) will be

�x�A � fy 2 Z3 : yÿ x 2 AZ3g:
Another useful notion will be that of a quotient space (see also

Rowicka et al., 2003a; Bricogne, 1993). In this article, we deal

with the quotient space of Z3 by AZ3

Z3=AZ3 � f�x�A : x 2 Z3g:

The notion of a quotient space allows us to describe periodi-

city conditions in a very convenient way. Instead of viewing f

as a periodic function, it can be equivalently considered as

de®ned on the set of the equivalence classes Z3=AZ3. Let us

introduce the notation

ÿ � Z3=AZ3 �14�
and

ÿ� � Z3=ATZ3;

where AT denotes the transposition of matrix A. The space ÿ�

is a space dual to ÿ. Its elements are covectors, i.e. objects dual

to vectors (for more details see Rowicka et al., 2004b).

Covectors are printed in bold type and they will be, when

there is no risk of confusion, also referred to as vectors. The

scalar product of a covector h 2 ÿ� and a vector x 2 ÿ,

expressed in standard bases, reads

h � x � �he�1 � ke�2 � le�3� � �xe1 � ye2 � ze3� � hx� ky� lz;

where h; k; l; x; y; z 2 Z. We use a shorthand notation eA�h; x�
for the coef®cient (also called `twiddle factor') occurring

frequently throughout this paper

eA�h; x� � exp�ÿ2�i h �Aÿ1x�:
This symbol has the following properties:

eA�g� h; x� � eA�g; x�eA�h; x�
eA�h; x� y� � eA�h; x�eA�h; y�

for any g; h 2 ÿ� and x; y 2 ÿ. Let f be a complex-valued

function on ÿ, where ÿ is given by equation (14). The Fourier

transform of function f is denoted by F and for any h 2 ÿ�

de®ned by

F�h� � P
x2ÿ

f �x�eA�h; x�: �15�

For simplicity, in the above formula, we have omitted the

normalization constant 1=jdet Aj.

A1. Crystallographic group action

Let G denote the quotient (or factor) crystallographic space

group (Bricogne, 1993; Rowicka et al., 2003a). The elements of

G are the symmetry operators as listed in International Tables

for Crystallography (Hahn, 1995). The group operation in G is

the ordinary composition of symmetry operators. We repre-

sent the action of an element g 2 G in the real space as

follows:

Sg�x� � Rgx� tg; �16�
where x 2 ÿ. We call Rg the rotational part of the symmetry

operator related to g. Since det Rg � �1, it follows that Rg can

be either a proper (det Rg � 1) or an improper (det Rg � ÿ1)

rotation. We call tg a translational part of the symmetry

operator. We stress that, since x 2 ÿ � Z3=AZ3, the symbol x

in the formula above is in fact the equivalence class �x�A. The

action (16) de®nes an action S# on a function f in space ÿ by

�S#
g f ��x� � f �Sÿ1

g �x�� � f �Rÿ1
g �xÿ tg��:
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This action S# on the functions in the real space extends to the

action S� on their Fourier transforms in the reciprocal space,

S�gF�h� � eA�h; tg�F�RT
g h�: �17�
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